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Abstract—We introduce the basic concepts of Convolutional
Neural Networks (CNN), their layered architecture and impor-
tant hyperparameters. Their historic development since their
neurophysiological real life inspiration get described. We also
point out the differences between classical Multilayer Perceptrons
in the aspects of interpreting images and learning while explain-
ing the components, layers and hyperparameters of a CNN.
We also explain the difficulties of training of very deep networks
with Stochastic Gradient Descent. But the new method Batch
Normalization helps significantly to improve the training of deep
neural nets. We elucidate the relationship between the frequency
spectrum of image data and the generalization behavior of con-
volutional neural networks. Deep convolutional neural networks
are widely used in many different fields, such as robotics, speech
recognition, sentence classification, medicines, economics and
others.

Index Terms—Learning From Data; Convolutional Neural
Networks; Machine Learning; training CNN; Stochastic Gradient
Descent; Deep CNN; generalization; CNN for sentence classifi-
cation; robot detection; crystallization outcomes; stock market
prediction.

I. INTRODUCTION

EEP Convolutional Neural Networks (CNN) are a recent

and broadly used technology in supervised machine
learning. Like for many other machine learning techniques,
the underlying biological concepts and components were
researched as early as the 1960s. Numerous scientists like
Hubel and Wiesel of in the field of biology and physiology
took inspiration from the cells in the human visual cortex for
their so called spatial invariance [1].

Based on this work, Dr. Kunihiko Fukushima introduced
the concept on Neocognition in the 1982 [2]. This approach
tried to mathematical formalize different layers of visual
perception with two different types of cells.

This approach was developed further in the 1990 by
Yann LeCun et al., into what is now called CNN. Their
proof of concept of a multilayer neural network was able
to accurately recognizing handwritten digits from a MNIST
Database [3].

Modern Deep CNN can be considered as a regularized
derivative of classical Neural Networks (NN), which they
improve by adding several connected dedicated layers in their
architecture. This adjustment enables CNN to be invariant
to shift, translation and space of input (SIANN) [4]. Due to
this, the most common application for CNN is in the field of
image analysis and recognition. Though use cases in other
disciplines like text analysis or economics are also mentioned
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Fig. 1. A graphical representation of a classic artificial feedforward neural
network. It consists of one Input, one Hidden and one Output layer with
several nodes in each. [5]

and shown in this report.

This Report is intended to introduce the reader into the
topic of Deep CNN. It focuses on the technical foundations
of CNN like the architecture, layers and hyper parameters as
well as the actual use and training of CNN.

This Paper is structured as follows. Section II begins
with a brief description of the fundamentals of neural
networks and their relevance for CNNs. Following this we
explain the structure of CNN architecture in section III.
Section IV goes into detail of the different layers of a CNN,
their properties and parameters, while section V explains the
most used hyperparameters Filters, Stride and Zero-Padding.
Section VI describes how CNNs are trained. In section VII
problems of overfitting and generalisation are discussed. The
most used fields for applying CNNs are introduced in section
VII which is then followed by a conclusion in the final
section IX.

II. CLASSICAL NEURAL NETWORKS

As mentioned in the Introduction in section I, we explain
the foundations of classical NN in this section to have a
comparison with CNN it in the further report.

Neural networks consist of multiple layers of perceptron
nodes and are thus called Multilayer Perceptrons (MLP). The
functionality of a single perceptron is inspired by biological
brain cells and their action potential firing. Similar to their
biological counterparts, perceptrons receive input values that
are weighted and a bias. These parts are add up and passed
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to a activation function which generates the output value of
the perceptron.

Several perceptrons can be included in a layer of which
several layers can be structured in orderly manner after each
other. Each output value of one perceptron is thus passed and
weighted as input to each node of the following layer. The
first layer, also called Input Layer, receives the features of the
input data. The last layer, called the Output Layer, returns
the result of the MLP (i.e. classification, regression).

To learn, the MLP needs to modify its weights for each input
value in each layer. For this the error backpropagation process
is used. It recalculates the weights backwards on basis of the
right or wrong result in the training data set [6].

While MLP have a lot of useful applications, there are
major disadvantages when it comes to the classification of
images.

The number of features coming from a single image
can be quickly very large. For greyscaled or black-and-white
images, the greyscale value of every pixel is used as a feature.
When using colored images, the number of color channels
(i.e. for RGB, CMYK) multiplies with the image dimensions
resulting in width x height x # of channels features.
MLP also aren’t invariant to the translation or rotation of the
objects within an image [4]. Similar pictures of the same
object but in different positions would lead to completely
different calculations of weights of the MLP.

Both of those problems are not easily resolved in real-world
applications, where images are not always centered of evenly
focused. Preprocessing or preparing those image data by hand
is often too inefficient.

III. ARCHITECTURE OF CNNSs

After we discussed the structure of classical known neural
networks in section II, we now focus on the architecture
of CNNs, their similarities and differences. Specifically the
setup of different distinct layers and their connection to each
other.

While the different layers of a MLP are often divided
into input, hidden and output layer, their inner workings stays
the same. Each node in each layer receives a weighted input
and calculates the output with its activation function and
passes its result.

In a CNN, layers differ in their procedure and purpose within
the network. The first layer is, like in a MLP, the Input
Layer to receive the data features. After this, a number of
Convolutional Layers execute the convolution process with
different filters to detect the different features of the image.
The multi dimensional output of the convolution is usually
added up and passed to the ReL.U function. For dimensionality
reduction, this output is committed to a Pooling Layer. The
alternation between Convolution and Pooling Layers can
happen for several times, depending on the performance of
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Fig. 2. Example architecture of a CNN processing an image. The input image
is processed by a number of consecutive convolution and pooling layers before
it can be classified and labeled. [7]

the CNN, as later appearances of Convolutional layers are
able to extract higher level features as earlier. In the last
layers of the CNN, the Flatten Layer reduces the dimensions
of the input volume get even further as the Pooling Layer.
With one dimensional data, the Fully Connected Layer now
finally classifies the image into labels, similar to a MLP, as
described in section II.

The key difference between a MLP and a CNN is the
purpose of the dedicated layers between their Input and
Output Layer.

IV. LAYERS

This section gives deeper insight into the different types of
layers within CNNs, as mentioned in section III. We describe
the Input Layer, the Convolution Layer, the Pooling Layer,
the Flatten and the Fully Connected Layer. Each one of the
aforementioned layers fulfills a certain purpose in the CNN.

A. Input Layer

The main task of the Input Layer is the extraction of features
from the input image. As mentioned in section II, the number
of features gained from images can be very large, depending
on the type of image. The dimensions of the input volume is
relevant to the whole training process of the CNN. A black and
white image can be translated into a two dimensional, binary
valued matrix with the dimensions of the image. Greyscaled
pictures produce values according to the scale of the pixel
(0—255) in a two dimensional matrix. Colored images create a
three dimensional input volume, which uses its color channels
as third dimension (see Fig. 3).

B. Convolution Layer

The Convolution Layer is the eponymous Layer of the
CNN. It performs the convolution process with a defined
filter on its input volume to detect the different characteristics
of an image. While the filters in early appearing Convolution
Layers only extract low level characteristics like edges or
blur, with increasing number of Convolution Layers, more
high level characteristics and objects can be detected.

To calculate the convolution, it can be described as the
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Fig. 3. Colored images translate into three-dimensional input volumes [7].

filter setup laying above the input image in the upper left
corner. The values of the filter are multiplied with the
underlying values of the image in the current position. These
products are add up and result in the new convoluted output.
Afterwards the filter moves along stepwises to its next
position on the input.

The convolution itself depends on the setting of several
hyperparameters. Section V will further explain the most
important ones.

As important as the dimensions of the input volume,
are the dimensions of the output after the convolution
process. The size of the output volume, dependent on the
hyperparameters, can be calculated by equation 1.

W — K+ 2P

5 +1 (D

Output size =

The parameters of the output function are the values of the
respective hyperparameters. W equals the width or the height
of input image. K equals the width or height of the applied
filter for this Convolution Layer. P equals the set Padding
around the input. S equals the stride of the filter.

The rectified linear unit (ReLU) function (eq. 2), passes its
given input value as long as it is positive. Otherwise the value
0 is returned. It was first introduced in 2000 by Hahnloser
et al. [8] and became one of the most defining functions for
CNN [9].

ReLU(z) = max(z,0) )

The ReLU function is not differentiable in its origin. Thus
it is often approximated in practice by the Softplus function
(eq. 3) for the backpropagation calculation [10].

Softplus(z) = In(1 + %) 3)

C. Pooling Layer

In an image, neighboring pixels often have similar values
and lead to similar results in the convolution process. This
redundant information may increase the output size of the
Convolution Layer, but is not necessarily important for clas-
sifying an object within the image. The main purpose of the
Pooling Layer is the reduction of dimensions by a specified
pooling size, after the convolution process. This process can
be compared to subsampling or compression processes.
Similar to the movement of the filter in the Convolution
Layer, a window of the pooling size. slides over the input
and executes a mathematical operations over all underlying
values. The result of this operation becomes the new smaller
input for further layers. The most common operations used in
the Pooling Layer are max, min and avg.

D. Flatten and Fully Connected Layer

The last layers of a CNN are the Flatten and Fully
Connected Layer. The Flatten Layers purpose is to transform
the output volume of all previous Convolution and Pooling
Layers into a one dimensional layer of nodes [7]. These
nodes work as input for the following Fully Connected Layer.
The Fully Connected Layer finally classifies its input into the
possible pre-defined classes.

The Softmax, or Softargmax, function originated from a
1868 work of austrian physicist Ludwig Boltzmann [11]. Yet,
its application in modern machine learning techniques was
first established in 1989 by John S. Bridle [12]. It is mostly
used for the last classification layer of the CNN when the
available output classes are mutually exclusive. [13]

eri
Zj evi

When looking at the equation of the Softmax function (eq.
4), we can see how it is basically a normalized exponential
function. The Softmax function turns its real input values
into probability values that sum up to one in a probability
distribution.

When applying the Softmax function to classify the output of
the Fully Connected Layer, the output node with its highest
value / highes probability becomes the label for the image.

Softmax(xz;) = 4)

Another possible activation function for the final classification
is the Sigmoid function (eq. 5). This function has many
applications and is often used activation function for MLP
due to its easy implementation and differentiation properties.
The Sigmoid function is usable for classification an image to
multiple labels [13].
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Sigmoid(x) (5)
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g. 4. Plot of the sigmoid, ReLU and softmax activation functions.

V. HYPERPARAMETERS

As mentioned in section IV, hyperparameters have a big in-
fluence in the quality of outcome of convolution. This section
will explain the three of the most important hyperparameters
for the convolution process, filters, stride and zero-padding.

A. Filter

The filter is the core of the convolution process. Often
filters are quadratic, with an uneven side length (i.e. 3 x 3,
5 x5 or 7x 7). The filter values define its main purpose. Edge
detecting filters often highlight certain fundamental features
of an image while filters for blur may be used to increase the
detection of higher level features [14].

B. Stride

The stride parameter defines how many pixels the filter
is moving over the input in each step of the convolution
process. While the standard value is 1, higher values result in
a lower overlap and resolution of the filter.

C. Zero-Padding

Zero-Padding is defines an area around the outer pixels

of the input image and fills it with the value 0. It is used
to modify the size of output dimensions and prevent losing
information from the outer borders of the image [15]. If
no padding is defined, the size of the output volume will
be smaller than the input volume, due to the nature of
convolution. This is called Valid Padding.
To keep the size of input and output the same, the so called
Same Padding can be applied. It adds p additional rows of 0
values around the input image. The value p can be calculated
by equation 6.

tlter size — 1
To increase the size of the output volume after convolution, a
padding area up to the size of the filter can be applied, which
is called Full Padding.

VI. TRAINING CNNs

Training of Deep Neural Networks is a complex process
because during the training changes of each layer input are
distributed due to transformation of the parameters in the
previous layers. All this decelerates the training requiring
lower learning rates, therefore the training of models with
nonlinearities is very difficult. In general, the CNN requires a
large amount of data for training [16].

Because of the difficulties in deep network training, re-
searchers have tried to elaborate the better one. Correctly
designed initialization strategies for activation functions have
been modified in order to improve the training process. This
strategies presented good results by testing.It has been shown
that the activation functions, which are based on local compe-
tition improve the training. In neural networks the connections
between layers and to output layers (in case of injected error)
are utilized with the goal to optimize the data flow. This
approach uses soft targets from a superficial teacher network
to support the training of deep student networks on multiple
levels. The deep networks can be trained layer-wise in support
of credit assignment, but this technique is not so effective like
direct training [17].

A. Stochastic Gradient Descent (SGD)

Stochastic gradient descent (SGD) is an efficient way of
training deep network and it is utilized to reach state of the
art performance.

Stochastic gradient descent optimizes the parameters © of
the network, therefore the loss function minimizes

N
o1
O = arg mmﬁ ; t(z,0) @)

where x/...n 1is a set of training data. The training with
the Stochastic gradient descent approach is executed in
steps, every step contemplate a mini-batch x/...m of size m.
For approximation of gradient of the loss function is used
mini-batch by computing with the following parameters

1 ab((Ei, @)

m 00 ®)

Utilization of mini-batches is useful in many aspects. First
of all it is important to clarify, that the gradient of the loss
function over a mini-batch and an estimation of the gradient
are beyond the training data set. The quality of gradient gets
better while increasing batch size. Calculation over a batch is
more effective than m calculations for individual models due to
more powerful computing platforms. It needs time-consuming
tuning of model hyper-parameters as well as the initial values
such as the learning rate for parameters of the model. The
training is complex because inputs to each layer depend on
the parameters of all layers. It means, that a few changes by
the parameters of network increases the probability that the
network becomes deeper.
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Fig. 5. Plotting loss over time using gradient descent.Plot demonstrates how
the loss over time has decreased dramatically. As you can see we have initially
very high loss, but during the training SGD Algorithm minimizes this loss
[18]

The change in the inputs in distributions of layers is
problematical, the layers can not quickly adapt to the new
distribution changes. By the changes in the input distribution
to a learning system, it should learn covariate shift. This
is normally carried out via domain adaptation. The idea of
covariate shift can be extended over the learning system and
operate with its parts, like a sub-networks, regarding the
network calculation ¢« = F2 (FI1(u,©2),01). F1 and F2 are
random transformations and the parameters ©2, ©1 represent
the ability to learn the minimization of the loss ¢. Learning
©2, ©1 can be shown as if the inputs x = F(u, ©1) are passed
to the sub-network « = F2(x, ©1).

The gradient descent step, for example

a4 ~=~ OF2(Xi,02)
@2<—®2—E27892 9)

Batch size m and learning rate a correspond to a stand-alone
network F2 with input x. The input distribution properties
make training more effective and contribute to training the
sub-network. ©2 does not have o be adjusted in order to
balance the changes by the distribution of x. The distribution
of inputs to a sub-network can have positive effects for the
layers outside the sub-network. Regarding the layer with the
sigmoid activation function:

z=g(Wu+b) (10)

where u is the input, vector b is the layer parameters for
learning, g(x) = I + exp(I-x) n and W is the weight matrix.
Where g(x) tends to zero increasing of X.

This implies that for all dimensions of x = W u + b except
only those with small absolute values the gradient converges
to u and the the training of model slows down. Because of the
influence from x by W, b and the parameters from all layers,
parameters vary during the training and make the process
slower.

This effect becomes better as the depth of network increases.
In reality, the results of evaporate gradients are normally
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Fig. 6. The test accuracy of network trained with and without Batch
Normalization, vs. the number of training steps. Batch Normalization helps
the network train faster and reach higher accuracy. Images (b) and (c¢) show
the evolution of input distributions to a sigmoid [16]

addressed by using Rectified Linear Units and low learning
rates. When the distribution of nonlinearity inputs stays robust
while the network is training the optimizer hangs in the
satisfied mode, and it makes the training faster.

B. Batch Normalization improves learning rates

During the training such as Internal Covariate Shift the
distributions of internal nodes of a deep network is changed.
By deactivating it the training becomes faster. It makes sense
to utilize a new approach called Batch Normalization, that
helps to reduce internal covariate shift and significantly im-
proves the training of deep neural nets. It achieves this state
with a normalization step that fixes the differences of layer
inputs. Batch Normalization has an advantageous impact on
the gradient flow. It provides an opportunity to use much
higher learning rates. Batch normalization also adjusts the
model and decreases the demand for Dropout. Lastly, Batch
Normalization facilitates the utilization of nonlinearities by
avoiding the network from hanging in the saturated modes.

With Batch Normalization, which acts as a regularizer,
learning rates become higher, for example reduce the need
for Dropout. Batch Normalization utilized in state-of-the-art
image classification model lets reach the same accuracy with
less training steps. Batch-normalized networks improve the
best published result on ImageNet classification (attaining
4.9 % top-5 validation error). Very high learning rate In
traditional deep networks can arise in the gradients that
erupt or disappear. Batch Normalization aims to solve these
problems. Normalizing activations over the network let avoid
small fluctuations of the parameters that might increase into
larger changes in activations in gradients. With the help
of normalizing activation the training does not hang in the
nonlinear saturated modes.

Using Batch Normalization training becomes more robust
with respect to the parameter scale. Typically, large learning
rates of the scale of layer parameters increase and these
improves the gradient during backpropagation. It is important
to clarify, that backpropagation with Batch Normalization by
a layer not distorted by the scale of its parameters, for a scalar
BN (W u) = BN((aW )u).

The scale does not influence the layer Jacobian and the gra-
dient propagation. Furthermore, bigger weights lead to smaller
gradients and Batch Normalization stabilizes the increasing
of parameters. The Batch Normalization can lead the layer
Jacobians to have values close to 1, which is advantageous for
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training. Corresponding two successive layers with normalized
inputs, and the changing between these vectors: bz = F (bx).
bx and bz are Gaussian and uncorrelated, F (bx) =~ Jbx is a
linear transformation for the given model parameters, therefore
bx and bz have unit covariances, and I = Cov [bz] = JCov
[bx] JT = JJT. Consequently, JJT = I, and all values of J
are equivalent to 1 as well and obtains the gradient sizes
throughout backpropagation. In practice, the transformation is
not linear and the normalized values are not required (do not
have to be) to be Gaussian, but what really surprising is that
Batch Normalization can help to make gradient propagation
well-behaved [16].

VII. GENERALIZATION

Usually the input data for CNN is nonlinear and multidi-
mensional. It raises the question how to properly utilize this
data. For this reason in order to gather common features from
high-dimensional spaces properly the generalization methods
are used. Although regularization together with data augmenta-
tion are effective methods to improve the generalization ability
of deep CNN, which aim to train the complex models keeping
overfitting on low level and extend the datasets in different
ways such as translation transformation, horizontal flip, this
problem still remains extremely challenging [19].

This section presents considerable progress in understanding
deep convolutional neural networks by analyzing of gen-
eralization performance and accomplishing optimization for
gradient descent based training algorithms [20]. Optimization
of deep CNN learning is a serious issue, because of different
gradient descent methods and the network structure, including
activation functions. Then the actual approach depends on
the generalization ability. The development of applications
based on deep learning is indivisible from the data support,
in particular in image classification, object detection. Human
can distinguish inaccuracies in real and natural sample dis-
tribution by increasing the amount of training data. But deep
CNN overfitting problem still present. The data-driven training
method helps us to get the result of data distribution in high-
dimensional space during the training process. This mean,
that the required reduction of data is only possible with our
perception and the efficient extension of the data is a more
appropriate method to approximate the natural distribution.It
is possible to regularize the feature boundaries of deep CNN
in a two-stage training process and therefore to improve the
generalization ability of the network [21].

A. Generalization explained by High frequency components

This section describes also the correlation between the
generalization behavior of convolutional neural networks and
the frequency spectrum of image data. First of all we want
to consider CNN’s capability in capturing the high-frequency
components of images. To understand the generalization be-
haviors of neural networks it is important to know the
properties of stochastic gradient descent, different complexity
measures and different models.

We consider the generalization behaviors of CNN from a
data perspective. The unsystematic generalization behaviors of
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Fig. 7. The central point of Generalization by High frequency components
is connections between the high-frequency and the semantic components of
the images. As a result, the model considers both high-frequency components
as well as semantic, therefore guiding to generalization behaviors that are
nontrivial to understand from human pespective. CNN can utilize the high-
frequency image components that are not visible to people [22]

CNN is a direct result of the differences in perception between
human and models (see Figure 6). CNN can perceive data with
a higher granularity than people can do (it could be done by
people) [22].

All notations used in this section mean the following: (x, y)
- a data sample (the image). f (-;©) signifies convolutional
neural network and the parameters are denoted as ©. H
is stands for a human model, and as an outcome,f (-; H)
describes human classification of the data. ¢(-,-) denotes a
generic loss function. «f(-,-) is a function evaluating, that
forecast accuracy for every sample. d (-,-) is a function,
analysing the distance between two vectors.F (-) is the Fourier
transform and F—1(-) is the inverse Fourier transform. z is used
to define the frequency component of a sample. Consequently,
z = F(x) and x = F—'(z). Just to clarify, Fourier transform can
represent complex numbers.

The raw data x = {zl,zh}, where xI and xh denote
the low-frequency component (LFC) and high-frequency
component (HFC) of x. Here are the corresponding equations:

z = F(x), Zi, Zh =t(z;r), (11)

X, =F-Y(2.), Xh=F-(Zh). (12)

where #( -; r) is a threshold function with the role to
divide the low and high frequency components from z
correspondingly to a radius r. With the help of a one channel
image of size n X m is t(-; r) to determine, with N possible
pixel values (x € Nnxn), therefore z € Cn x n and C
defines the complex number. z(i, j) is utilized to index the
value of z at position (i, j), and to denote the centroid is used
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ci, ¢j. The following equation zl , zh = #(z; r) is determined:
2(i,5)
26,0 = [t @) ey <r o a3)
0

otherwise

z(1,5)
Zh(i, j) = / Ui d(ig), e < (4)

otherwise
d(-,-) in t(-; r) is defined as the Euclidean distance. The
approach employs independently on every channel of pixels,
in case x has more than one channel. According to assumption
that only x/ is visible to human, but both x/ and xk are visible
to a CNN, we determine:

y:=f (v;H) = f(zl; H), (15)
but when a CNN is trained with
arg mine(f (z;0),y), (16)
which equivalent to
arg mine(f ({zl,zh};0),y) a7

To minimize the loss, CNN’s must learn to utilize xh. As an
effect, CNN’s generalization behavior compared to a human is
unsystematic. It is very important that CNN learns to utilizexh
which must differ from CNN overfit. The reason is that x% can
include more data than sample-specific feature and these data
can be generalized with the training, but not visible to people
[22].

VIII. APPLICATIONS OF CNNS

Deep convolutional neural networks are widely used in
many different fields, such as robotics, speech recognition,
sentence classification, medicines, economics and others.
CNNs using also in robotics with limited computational ca-
pabilities. Categorization and object detection is the essential
application fields of deep learning in robotics.

State-of-the-art approach utilized for categorization and
object detection which based on generating object methods
and by classification using a Convolutional Neural Network
(CNN). CNN helps systems to recognize various object cate-
gories. Real-time operation is important approach for the appli-
cation of CNNs for characterization and object detection. But
object detection and categorization based on CNN methods
are not able to operate in real-time in most robotics systems.
These approaches are based on using sources for the objects
segmentation (depth data, color, etc.) and also utilizing object
specific weak detectors for expanding the required proposals.
Lightweight and fast CNN architectures can also utilized in
case of dealing with a limited number of object categories.

There are two different CNN based NAO robotics detectors
that are able to run in real-time. Nao is an autonomous
humanoid robot, developed by Aldebaran Robotics. These

detectors can analyze a robot object-proposal in 1 ms and
the average number of proposals to analyze in the system is
1.5 per frame. The detection rate is approximately 97 %. Deep
learning in robotics with limited computational resources must
utilize fast and lightweight neural models.

State-of-the-art systems based on CNNs require large mem-
ory and computational resources, for example high-end GPUs.
CNN-based approaches are incapable to operate on systems
with low resources, such as mobile robots. Therefore, it is very
important in to research and development the approaches that
help CNNs to work with less memory and fewer computational
resources, such as quantization of the networks. Different
approaches have been offered for the quantization of CNNs.
These techniques able to calculate the required convolutions
using fast Fourier Transform method. This method utilize
representation of the convolutions and compress the param-
eters of the network. Two binary-based network architectures:
XNOR-Networks and Binary-Weight-Networks have shown
very gut results. The filters in Binary-Weight-Networks are
approximated with binary values in closed form, therefore
saving in a 32x memory. The convolutional layers input both
filters in XNOR-Networks are binary. However, non-binary
non-linearities such as ReLU can be utilized.This outcomes
in 58x faster convolutional operations on a CPU, in case of
utilizing of XNOR and bit-counting operations. The classi-
fication accuracy with a Binary-Weight-Network version of
AlexNet is only 2.9% less than the full-precision AlexNet.
XNOR-Networks have larger decreasing in accuracy about
12.4%. The best results best results can be achieved by using
networks with a low number of parameters in a non-standard
CNN structure, like SqueezeNet. Therefore XNOR-Net and
SqueezeNet is used for implementing NAO robot detectors
[23].

Deep learning models have achieved successful results in
speech recognition. For example, in natural language process-
ing, with approach of learning word vector representations
by neural language models and learning wordvectors for
classification.Convolutional neural networks (CNN) use layers
with convolving filters that are utilized to local features.
CNN models have been shown as efficient for NLP and
have achieved remarkable results in semantic parsing, sentence
modeling and other conventional NLP tasks. CNNs were
trained with one layer of convolution on top of word vectors
received from an unsupervised neural language model. These
vectors were trained on 100 billion words of Google News.
This model achieves gut results on multiple benchmarks. The
simple modification are required for better results and for
utilizing of both pre-trained and task-specific vectors.Learning
task-specific vectors through fine-tuning results in further
improvements [24].

Also Classification of crystallization results using deep
convolutional neural networks.The Machine Recognition of
Crystallization Outcomes (MARCO) has gathered round half a
million images of macromolecular crystallization experiments
from different sources. The state-of-the-art approach is uti-
lized here, therefore about 94% of the test images can be
properly labeled. Crystal recognition is very important for
the systematic analysis of crystallization experiments. This
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approach plays an essential role for industrial and fundamental
research applications.This model is implemented in Tensor-
Flow and trained using an asynchronous distributed training
setup across 50 NVidia K80 GPUs. This approach can generate
100M images (260 epochs) in circa 19 hours. The original
labeling increase to a model with 94.2% accuracy . Relabeling
enhanced reported classification accuracy by 0.3%. The model
reaches 94.5% accuracy [25].

Convolutional Neural Networks is also utilized in eco-
nomics areas. A stock prediction model and candle charts
with continuous time stock data based on deep Convolutional
Neural Networks. The original data by prediction time interval
and classification approach is divided into various categories as
the training set of CNN. The CNN is applied with the goal to
predict the stock market and analyse the difference in accuracy
under various classification methods. The effects demonstrate
that the approach has the best performance by the prediction
time interval of 20 days.CNN model needs to be trained, in
order to make the forecast outcomes more accurate. CNN is
very efficient in addressing the issues of image processing.
CNN-based network model have been build for the images
of the obtained financial tinformation. This network model
consists of four 2d convolutional layers, four 2d pooling layers,
and three output layers. CNN requires that the value of a
pixel is related to its adjacenting pixels, therefore for CNN
is more comfortable to extract texture data and improving the
forecast result.The forecast accuracy based on the contained
CNN model must be firts compute and therefore analyze the
effect of the three indicators of forecast such as interval,
classification on the forecast accuracy and image richness. The
consequences of that a accurate data set type can be archieved
for further investigation in the future [26].

IX. CONCLUSION

The basis of many modern computer vision models are
Convolutional Neural Networks. CNN has made significant
progress, particuly iarln image recognition and vision-related
tasks. This paper shows similarities and differences in the
CNN architectures, the set up of different various layers. CNNs
are one of the best algorithms for image recognition and have
shown extraordinary performance in image understanding,
detection, classification and other related tasks. This paper also
covers the architecture classification, training, generalization,
its applications and future directions.

The learning performance of CNN is remarkable improved
in the last years by utilizing depth and other structural
modifications. The latest literature indicate that the important
breakthrough in CNN performance has been reached with
blocks. One of the main accomplishments of research in CNN
architectures is the development of efficient block architec-
tures. The block is very useful in a network. It utilizes three-
dimensional or feature-map data and aids for input channels
to improve achievement. The blocks play an important role in
amplification CNN performance by problem-aware learning.

CNN is able without complicated processing to learn good
internal representation from raw pixels. Nowadays most of
the developers of image processing and computer vision

competitions are applying deep CNN based models. There-
fore, deep CNNs have demonstrated considerable performance
improvement in recognition tasks which including hundreds of
image categories, over conventional vision-based models.

The applying of various progressive ideas in CNN archi-
tecture has changed the tendency of research, particularly in
image processing. A grid-like topological information changes
performance of CNN to the powerful model for images.
Deep architectures commonly have a benefit over shallow
architectures by complex learning issues. The stacking of
multiple linear and non-linear processing units in a layer-
wise mode aids to learn complex patterns at various levels
of abstraction.

Architecture of CNN is a promising research area. CNN
tends to be in the future one of the most broadly used artificial
intelligence approaches. The techniques such as batch normal-
ization, dropout are also important for performance of CNNs.
The various architectures can help the model in improving
generalization and stability on different categories of images
by semantic representations. In the future, it is anticipated that
the capability of cloud-based platforms will be utilized for
the development of CNN applications. In such companies as
Google, Microsoft, Facebook and NEC the research groups
work active for developing new architectures of CNN [27].
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